You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1318 lines
42 KiB

5 months ago
/**
******************************************************************************
* @file stm32h7xx_hal.c
* @author MCD Application Team
* @brief HAL module driver.
* This is the common part of the HAL initialization
*
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The common HAL driver contains a set of generic and common APIs that can be
used by the PPP peripheral drivers and the user to start using the HAL.
[..]
The HAL contains two APIs' categories:
(+) Common HAL APIs
(+) Services HAL APIs
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32h7xx_hal.h"
/** @addtogroup STM32H7xx_HAL_Driver
* @{
*/
/** @defgroup HAL HAL
* @brief HAL module driver.
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/**
* @brief STM32H7xx HAL Driver version number V1.11.0
*/
#define __STM32H7xx_HAL_VERSION_MAIN (0x01UL) /*!< [31:24] main version */
#define __STM32H7xx_HAL_VERSION_SUB1 (0x0BUL) /*!< [23:16] sub1 version */
#define __STM32H7xx_HAL_VERSION_SUB2 (0x00UL) /*!< [15:8] sub2 version */
#define __STM32H7xx_HAL_VERSION_RC (0x00UL) /*!< [7:0] release candidate */
#define __STM32H7xx_HAL_VERSION ((__STM32H7xx_HAL_VERSION_MAIN << 24)\
|(__STM32H7xx_HAL_VERSION_SUB1 << 16)\
|(__STM32H7xx_HAL_VERSION_SUB2 << 8 )\
|(__STM32H7xx_HAL_VERSION_RC))
#define IDCODE_DEVID_MASK ((uint32_t)0x00000FFF)
#define VREFBUF_TIMEOUT_VALUE (uint32_t)10 /* 10 ms */
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Exported variables --------------------------------------------------------*/
/** @defgroup HAL_Exported_Variables HAL Exported Variables
* @{
*/
__IO uint32_t uwTick;
uint32_t uwTickPrio = (1UL << __NVIC_PRIO_BITS); /* Invalid PRIO */
HAL_TickFreqTypeDef uwTickFreq = HAL_TICK_FREQ_DEFAULT; /* 1KHz */
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup HAL_Private_Functions HAL Private Functions
* @{
*/
/** @defgroup HAL_Group1 Initialization and de-initialization Functions
* @brief Initialization and de-initialization functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Initializes the Flash interface the NVIC allocation and initial clock
configuration. It initializes the systick also when timeout is needed
and the backup domain when enabled.
(+) De-Initializes common part of the HAL.
(+) Configure The time base source to have 1ms time base with a dedicated
Tick interrupt priority.
(++) SysTick timer is used by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
(++) Time base configuration function (HAL_InitTick ()) is called automatically
at the beginning of the program after reset by HAL_Init() or at any time
when clock is configured, by HAL_RCC_ClockConfig().
(++) Source of time base is configured to generate interrupts at regular
time intervals. Care must be taken if HAL_Delay() is called from a
peripheral ISR process, the Tick interrupt line must have higher priority
(numerically lower) than the peripheral interrupt. Otherwise the caller
ISR process will be blocked.
(++) functions affecting time base configurations are declared as __weak
to make override possible in case of other implementations in user file.
@endverbatim
* @{
*/
/**
* @brief This function is used to initialize the HAL Library; it must be the first
* instruction to be executed in the main program (before to call any other
* HAL function), it performs the following:
* Configures the SysTick to generate an interrupt each 1 millisecond,
* which is clocked by the HSI (at this stage, the clock is not yet
* configured and thus the system is running from the internal HSI at 16 MHz).
* Set NVIC Group Priority to 4.
* Calls the HAL_MspInit() callback function defined in user file
* "stm32h7xx_hal_msp.c" to do the global low level hardware initialization
*
* @note SysTick is used as time base for the HAL_Delay() function, the application
* need to ensure that the SysTick time base is always set to 1 millisecond
* to have correct HAL operation.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_Init(void)
{
uint32_t common_system_clock;
#if defined(DUAL_CORE) && defined(CORE_CM4)
/* Configure Cortex-M4 Instruction cache through ART accelerator */
__HAL_RCC_ART_CLK_ENABLE(); /* Enable the Cortex-M4 ART Clock */
__HAL_ART_CONFIG_BASE_ADDRESS(0x08100000UL); /* Configure the Cortex-M4 ART Base address to the Flash Bank 2 : */
__HAL_ART_ENABLE(); /* Enable the Cortex-M4 ART */
#endif /* DUAL_CORE && CORE_CM4 */
/* Set Interrupt Group Priority */
HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
/* Update the SystemCoreClock global variable */
#if defined(RCC_D1CFGR_D1CPRE)
common_system_clock = HAL_RCC_GetSysClockFreq() >> ((D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_D1CPRE)>> RCC_D1CFGR_D1CPRE_Pos]) & 0x1FU);
#else
common_system_clock = HAL_RCC_GetSysClockFreq() >> ((D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_CDCPRE)>> RCC_CDCFGR1_CDCPRE_Pos]) & 0x1FU);
#endif
/* Update the SystemD2Clock global variable */
#if defined(RCC_D1CFGR_HPRE)
SystemD2Clock = (common_system_clock >> ((D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_HPRE)>> RCC_D1CFGR_HPRE_Pos]) & 0x1FU));
#else
SystemD2Clock = (common_system_clock >> ((D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_HPRE)>> RCC_CDCFGR1_HPRE_Pos]) & 0x1FU));
#endif
#if defined(DUAL_CORE) && defined(CORE_CM4)
SystemCoreClock = SystemD2Clock;
#else
SystemCoreClock = common_system_clock;
#endif /* DUAL_CORE && CORE_CM4 */
/* Use systick as time base source and configure 1ms tick (default clock after Reset is HSI) */
if(HAL_InitTick(TICK_INT_PRIORITY) != HAL_OK)
{
return HAL_ERROR;
}
/* Init the low level hardware */
HAL_MspInit();
/* Return function status */
return HAL_OK;
}
/**
* @brief This function de-Initializes common part of the HAL and stops the systick.
* This function is optional.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DeInit(void)
{
/* Reset of all peripherals */
__HAL_RCC_AHB3_FORCE_RESET();
__HAL_RCC_AHB3_RELEASE_RESET();
__HAL_RCC_AHB1_FORCE_RESET();
__HAL_RCC_AHB1_RELEASE_RESET();
__HAL_RCC_AHB2_FORCE_RESET();
__HAL_RCC_AHB2_RELEASE_RESET();
__HAL_RCC_AHB4_FORCE_RESET();
__HAL_RCC_AHB4_RELEASE_RESET();
__HAL_RCC_APB3_FORCE_RESET();
__HAL_RCC_APB3_RELEASE_RESET();
__HAL_RCC_APB1L_FORCE_RESET();
__HAL_RCC_APB1L_RELEASE_RESET();
__HAL_RCC_APB1H_FORCE_RESET();
__HAL_RCC_APB1H_RELEASE_RESET();
__HAL_RCC_APB2_FORCE_RESET();
__HAL_RCC_APB2_RELEASE_RESET();
__HAL_RCC_APB4_FORCE_RESET();
__HAL_RCC_APB4_RELEASE_RESET();
/* De-Init the low level hardware */
HAL_MspDeInit();
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the MSP.
* @retval None
*/
__weak void HAL_MspInit(void)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes the MSP.
* @retval None
*/
__weak void HAL_MspDeInit(void)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_MspDeInit could be implemented in the user file
*/
}
/**
* @brief This function configures the source of the time base.
* The time source is configured to have 1ms time base with a dedicated
* Tick interrupt priority.
* @note This function is called automatically at the beginning of program after
* reset by HAL_Init() or at any time when clock is reconfigured by HAL_RCC_ClockConfig().
* @note In the default implementation, SysTick timer is the source of time base.
* It is used to generate interrupts at regular time intervals.
* Care must be taken if HAL_Delay() is called from a peripheral ISR process,
* The the SysTick interrupt must have higher priority (numerically lower)
* than the peripheral interrupt. Otherwise the caller ISR process will be blocked.
* The function is declared as __weak to be overwritten in case of other
* implementation in user file.
* @param TickPriority: Tick interrupt priority.
* @retval HAL status
*/
__weak HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
{
/* Check uwTickFreq for MisraC 2012 (even if uwTickFreq is a enum type that don't take the value zero)*/
if((uint32_t)uwTickFreq == 0UL)
{
return HAL_ERROR;
}
/* Configure the SysTick to have interrupt in 1ms time basis*/
if (HAL_SYSTICK_Config(SystemCoreClock / (1000UL / (uint32_t)uwTickFreq)) > 0U)
{
return HAL_ERROR;
}
/* Configure the SysTick IRQ priority */
if (TickPriority < (1UL << __NVIC_PRIO_BITS))
{
HAL_NVIC_SetPriority(SysTick_IRQn, TickPriority, 0U);
uwTickPrio = TickPriority;
}
else
{
return HAL_ERROR;
}
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/** @defgroup HAL_Group2 HAL Control functions
* @brief HAL Control functions
*
@verbatim
===============================================================================
##### HAL Control functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Provide a tick value in millisecond
(+) Provide a blocking delay in millisecond
(+) Suspend the time base source interrupt
(+) Resume the time base source interrupt
(+) Get the HAL API driver version
(+) Get the device identifier
(+) Get the device revision identifier
(+) Enable/Disable Debug module during SLEEP mode
(+) Enable/Disable Debug module during STOP mode
(+) Enable/Disable Debug module during STANDBY mode
@endverbatim
* @{
*/
/**
* @brief This function is called to increment a global variable "uwTick"
* used as application time base.
* @note In the default implementation, this variable is incremented each 1ms
* in Systick ISR.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval None
*/
__weak void HAL_IncTick(void)
{
uwTick += (uint32_t)uwTickFreq;
}
/**
* @brief Provides a tick value in millisecond.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval tick value
*/
__weak uint32_t HAL_GetTick(void)
{
return uwTick;
}
/**
* @brief This function returns a tick priority.
* @retval tick priority
*/
uint32_t HAL_GetTickPrio(void)
{
return uwTickPrio;
}
/**
* @brief Set new tick Freq.
* @retval Status
*/
HAL_StatusTypeDef HAL_SetTickFreq(HAL_TickFreqTypeDef Freq)
{
HAL_StatusTypeDef status = HAL_OK;
HAL_TickFreqTypeDef prevTickFreq;
assert_param(IS_TICKFREQ(Freq));
if (uwTickFreq != Freq)
{
/* Back up uwTickFreq frequency */
prevTickFreq = uwTickFreq;
/* Update uwTickFreq global variable used by HAL_InitTick() */
uwTickFreq = Freq;
/* Apply the new tick Freq */
status = HAL_InitTick(uwTickPrio);
if (status != HAL_OK)
{
/* Restore previous tick frequency */
uwTickFreq = prevTickFreq;
}
}
return status;
}
/**
* @brief Return tick frequency.
* @retval tick period in Hz
*/
HAL_TickFreqTypeDef HAL_GetTickFreq(void)
{
return uwTickFreq;
}
/**
* @brief This function provides minimum delay (in milliseconds) based
* on variable incremented.
* @note In the default implementation , SysTick timer is the source of time base.
* It is used to generate interrupts at regular time intervals where uwTick
* is incremented.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @param Delay specifies the delay time length, in milliseconds.
* @retval None
*/
__weak void HAL_Delay(uint32_t Delay)
{
uint32_t tickstart = HAL_GetTick();
uint32_t wait = Delay;
/* Add a freq to guarantee minimum wait */
if (wait < HAL_MAX_DELAY)
{
wait += (uint32_t)(uwTickFreq);
}
while ((HAL_GetTick() - tickstart) < wait)
{
}
}
/**
* @brief Suspend Tick increment.
* @note In the default implementation , SysTick timer is the source of time base. It is
* used to generate interrupts at regular time intervals. Once HAL_SuspendTick()
* is called, the the SysTick interrupt will be disabled and so Tick increment
* is suspended.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval None
*/
__weak void HAL_SuspendTick(void)
{
/* Disable SysTick Interrupt */
SysTick->CTRL &= ~SysTick_CTRL_TICKINT_Msk;
}
/**
* @brief Resume Tick increment.
* @note In the default implementation , SysTick timer is the source of time base. It is
* used to generate interrupts at regular time intervals. Once HAL_ResumeTick()
* is called, the the SysTick interrupt will be enabled and so Tick increment
* is resumed.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval None
*/
__weak void HAL_ResumeTick(void)
{
/* Enable SysTick Interrupt */
SysTick->CTRL |= SysTick_CTRL_TICKINT_Msk;
}
/**
* @brief Returns the HAL revision
* @retval version : 0xXYZR (8bits for each decimal, R for RC)
*/
uint32_t HAL_GetHalVersion(void)
{
return __STM32H7xx_HAL_VERSION;
}
/**
* @brief Returns the device revision identifier.
* @retval Device revision identifier
*/
uint32_t HAL_GetREVID(void)
{
return((DBGMCU->IDCODE) >> 16);
}
/**
* @brief Returns the device identifier.
* @retval Device identifier
*/
uint32_t HAL_GetDEVID(void)
{
return((DBGMCU->IDCODE) & IDCODE_DEVID_MASK);
}
/**
* @brief Return the first word of the unique device identifier (UID based on 96 bits)
* @retval Device identifier
*/
uint32_t HAL_GetUIDw0(void)
{
return(READ_REG(*((uint32_t *)UID_BASE)));
}
/**
* @brief Return the second word of the unique device identifier (UID based on 96 bits)
* @retval Device identifier
*/
uint32_t HAL_GetUIDw1(void)
{
return(READ_REG(*((uint32_t *)(UID_BASE + 4U))));
}
/**
* @brief Return the third word of the unique device identifier (UID based on 96 bits)
* @retval Device identifier
*/
uint32_t HAL_GetUIDw2(void)
{
return(READ_REG(*((uint32_t *)(UID_BASE + 8U))));
}
/**
* @brief Configure the internal voltage reference buffer voltage scale.
* @param VoltageScaling specifies the output voltage to achieve
* This parameter can be one of the following values:
* @arg SYSCFG_VREFBUF_VOLTAGE_SCALE0: VREF_OUT1 around 2.5 V.
* This requires VDDA equal to or higher than 2.8 V.
* @arg SYSCFG_VREFBUF_VOLTAGE_SCALE1: VREF_OUT2 around 2.048 V.
* This requires VDDA equal to or higher than 2.4 V.
* @arg SYSCFG_VREFBUF_VOLTAGE_SCALE2: VREF_OUT3 around 1.8 V.
* This requires VDDA equal to or higher than 2.1 V.
* @arg SYSCFG_VREFBUF_VOLTAGE_SCALE3: VREF_OUT4 around 1.5 V.
* This requires VDDA equal to or higher than 1.8 V.
* @retval None
*/
void HAL_SYSCFG_VREFBUF_VoltageScalingConfig(uint32_t VoltageScaling)
{
/* Check the parameters */
assert_param(IS_SYSCFG_VREFBUF_VOLTAGE_SCALE(VoltageScaling));
MODIFY_REG(VREFBUF->CSR, VREFBUF_CSR_VRS, VoltageScaling);
}
/**
* @brief Configure the internal voltage reference buffer high impedance mode.
* @param Mode specifies the high impedance mode
* This parameter can be one of the following values:
* @arg SYSCFG_VREFBUF_HIGH_IMPEDANCE_DISABLE: VREF+ pin is internally connect to VREFINT output.
* @arg SYSCFG_VREFBUF_HIGH_IMPEDANCE_ENABLE: VREF+ pin is high impedance.
* @retval None
*/
void HAL_SYSCFG_VREFBUF_HighImpedanceConfig(uint32_t Mode)
{
/* Check the parameters */
assert_param(IS_SYSCFG_VREFBUF_HIGH_IMPEDANCE(Mode));
MODIFY_REG(VREFBUF->CSR, VREFBUF_CSR_HIZ, Mode);
}
/**
* @brief Tune the Internal Voltage Reference buffer (VREFBUF).
* @retval None
*/
void HAL_SYSCFG_VREFBUF_TrimmingConfig(uint32_t TrimmingValue)
{
/* Check the parameters */
assert_param(IS_SYSCFG_VREFBUF_TRIMMING(TrimmingValue));
MODIFY_REG(VREFBUF->CCR, VREFBUF_CCR_TRIM, TrimmingValue);
}
/**
* @brief Enable the Internal Voltage Reference buffer (VREFBUF).
* @retval HAL_OK/HAL_TIMEOUT
*/
HAL_StatusTypeDef HAL_SYSCFG_EnableVREFBUF(void)
{
uint32_t tickstart;
SET_BIT(VREFBUF->CSR, VREFBUF_CSR_ENVR);
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait for VRR bit */
while(READ_BIT(VREFBUF->CSR, VREFBUF_CSR_VRR) == 0UL)
{
if((HAL_GetTick() - tickstart) > VREFBUF_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
return HAL_OK;
}
/**
* @brief Disable the Internal Voltage Reference buffer (VREFBUF).
*
* @retval None
*/
void HAL_SYSCFG_DisableVREFBUF(void)
{
CLEAR_BIT(VREFBUF->CSR, VREFBUF_CSR_ENVR);
}
#if defined(SYSCFG_PMCR_EPIS_SEL)
/**
* @brief Ethernet PHY Interface Selection either MII or RMII
* @param SYSCFG_ETHInterface: Selects the Ethernet PHY interface
* This parameter can be one of the following values:
* @arg SYSCFG_ETH_MII : Select the Media Independent Interface
* @arg SYSCFG_ETH_RMII: Select the Reduced Media Independent Interface
* @retval None
*/
void HAL_SYSCFG_ETHInterfaceSelect(uint32_t SYSCFG_ETHInterface)
{
/* Check the parameter */
assert_param(IS_SYSCFG_ETHERNET_CONFIG(SYSCFG_ETHInterface));
MODIFY_REG(SYSCFG->PMCR, SYSCFG_PMCR_EPIS_SEL, (uint32_t)(SYSCFG_ETHInterface));
}
#endif /* SYSCFG_PMCR_EPIS_SEL */
/**
* @brief Analog Switch control for dual analog pads.
* @param SYSCFG_AnalogSwitch: Selects the analog pad
* This parameter can be one or a combination of the following values:
* @arg SYSCFG_SWITCH_PA0 : Select PA0 analog switch
* @arg SYSCFG_SWITCH_PA1: Select PA1 analog switch
* @arg SYSCFG_SWITCH_PC2 : Select PC2 analog switch
* @arg SYSCFG_SWITCH_PC3: Select PC3 analog switch
* @param SYSCFG_SwitchState: Open or Close the analog switch between dual pads (PXn and PXn_C)
* This parameter can be one or a combination of the following values:
* @arg SYSCFG_SWITCH_PA0_OPEN
* @arg SYSCFG_SWITCH_PA0_CLOSE
* @arg SYSCFG_SWITCH_PA1_OPEN
* @arg SYSCFG_SWITCH_PA1_CLOSE
* @arg SYSCFG_SWITCH_PC2_OPEN
* @arg SYSCFG_SWITCH_PC2_CLOSE
* @arg SYSCFG_SWITCH_PC3_OPEN
* @arg SYSCFG_SWITCH_PC3_CLOSE
* @retval None
*/
void HAL_SYSCFG_AnalogSwitchConfig(uint32_t SYSCFG_AnalogSwitch , uint32_t SYSCFG_SwitchState )
{
/* Check the parameter */
assert_param(IS_SYSCFG_ANALOG_SWITCH(SYSCFG_AnalogSwitch));
assert_param(IS_SYSCFG_SWITCH_STATE(SYSCFG_SwitchState));
MODIFY_REG(SYSCFG->PMCR, (uint32_t) SYSCFG_AnalogSwitch, (uint32_t)(SYSCFG_SwitchState));
}
#if defined(SYSCFG_PMCR_BOOSTEN)
/**
* @brief Enables the booster to reduce the total harmonic distortion of the analog
* switch when the supply voltage is lower than 2.7 V.
* @note Activating the booster allows to guaranty the analog switch AC performance
* when the supply voltage is below 2.7 V: in this case, the analog switch
* performance is the same on the full voltage range
* @retval None
*/
void HAL_SYSCFG_EnableBOOST(void)
{
SET_BIT(SYSCFG->PMCR, SYSCFG_PMCR_BOOSTEN) ;
}
/**
* @brief Disables the booster
* @note Activating the booster allows to guaranty the analog switch AC performance
* when the supply voltage is below 2.7 V: in this case, the analog switch
* performance is the same on the full voltage range
* @retval None
*/
void HAL_SYSCFG_DisableBOOST(void)
{
CLEAR_BIT(SYSCFG->PMCR, SYSCFG_PMCR_BOOSTEN) ;
}
#endif /* SYSCFG_PMCR_BOOSTEN */
#if defined (SYSCFG_UR2_BOOT_ADD0) || defined (SYSCFG_UR2_BCM7_ADD0)
/**
* @brief BootCM7 address 0 configuration
* @param BootRegister :Specifies the Boot Address register (Address0 or Address1)
* This parameter can be one of the following values:
* @arg SYSCFG_BOOT_ADDR0 : Select the boot address0
* @arg SYSCFG_BOOT_ADDR1: Select the boot address1
* @param BootAddress :Specifies the CM7 Boot Address to be loaded in Address0 or Address1
* @retval None
*/
void HAL_SYSCFG_CM7BootAddConfig(uint32_t BootRegister, uint32_t BootAddress)
{
/* Check the parameters */
assert_param(IS_SYSCFG_BOOT_REGISTER(BootRegister));
assert_param(IS_SYSCFG_BOOT_ADDRESS(BootAddress));
if ( BootRegister == SYSCFG_BOOT_ADDR0 )
{
/* Configure CM7 BOOT ADD0 */
#if defined(DUAL_CORE)
MODIFY_REG(SYSCFG->UR2, SYSCFG_UR2_BCM7_ADD0, ((BootAddress >> 16) << SYSCFG_UR2_BCM7_ADD0_Pos));
#else
MODIFY_REG(SYSCFG->UR2, SYSCFG_UR2_BOOT_ADD0, ((BootAddress >> 16) << SYSCFG_UR2_BOOT_ADD0_Pos));
#endif /*DUAL_CORE*/
}
else
{
/* Configure CM7 BOOT ADD1 */
#if defined(DUAL_CORE)
MODIFY_REG(SYSCFG->UR3, SYSCFG_UR3_BCM7_ADD1, (BootAddress >> 16));
#else
MODIFY_REG(SYSCFG->UR3, SYSCFG_UR3_BOOT_ADD1, (BootAddress >> 16));
#endif /*DUAL_CORE*/
}
}
#endif /* SYSCFG_UR2_BOOT_ADD0 || SYSCFG_UR2_BCM7_ADD0 */
#if defined(DUAL_CORE)
/**
* @brief BootCM4 address 0 configuration
* @param BootRegister :Specifies the Boot Address register (Address0 or Address1)
* This parameter can be one of the following values:
* @arg SYSCFG_BOOT_ADDR0 : Select the boot address0
* @arg SYSCFG_BOOT_ADDR1: Select the boot address1
* @param BootAddress :Specifies the CM4 Boot Address to be loaded in Address0 or Address1
* @retval None
*/
void HAL_SYSCFG_CM4BootAddConfig(uint32_t BootRegister, uint32_t BootAddress)
{
/* Check the parameters */
assert_param(IS_SYSCFG_BOOT_REGISTER(BootRegister));
assert_param(IS_SYSCFG_BOOT_ADDRESS(BootAddress));
if ( BootRegister == SYSCFG_BOOT_ADDR0 )
{
/* Configure CM4 BOOT ADD0 */
MODIFY_REG(SYSCFG->UR3, SYSCFG_UR3_BCM4_ADD0, ((BootAddress >> 16)<< SYSCFG_UR3_BCM4_ADD0_Pos));
}
else
{
/* Configure CM4 BOOT ADD1 */
MODIFY_REG(SYSCFG->UR4, SYSCFG_UR4_BCM4_ADD1, (BootAddress >> 16));
}
}
/**
* @brief Enables the Cortex-M7 boot
* @retval None
*/
void HAL_SYSCFG_EnableCM7BOOT(void)
{
SET_BIT(SYSCFG->UR1, SYSCFG_UR1_BCM7);
}
/**
* @brief Disables the Cortex-M7 boot
* @note Disabling the boot will gate the CPU clock
* @retval None
*/
void HAL_SYSCFG_DisableCM7BOOT(void)
{
CLEAR_BIT(SYSCFG->UR1, SYSCFG_UR1_BCM7) ;
}
/**
* @brief Enables the Cortex-M4 boot
* @retval None
*/
void HAL_SYSCFG_EnableCM4BOOT(void)
{
SET_BIT(SYSCFG->UR1, SYSCFG_UR1_BCM4);
}
/**
* @brief Disables the Cortex-M4 boot
* @note Disabling the boot will gate the CPU clock
* @retval None
*/
void HAL_SYSCFG_DisableCM4BOOT(void)
{
CLEAR_BIT(SYSCFG->UR1, SYSCFG_UR1_BCM4);
}
#endif /*DUAL_CORE*/
/**
* @brief Enables the I/O Compensation Cell.
* @note The I/O compensation cell can be used only when the device supply
* voltage ranges from 1.62 to 2.0 V and from 2.7 to 3.6 V.
* @retval None
*/
void HAL_EnableCompensationCell(void)
{
SET_BIT(SYSCFG->CCCSR, SYSCFG_CCCSR_EN) ;
}
/**
* @brief Power-down the I/O Compensation Cell.
* @note The I/O compensation cell can be used only when the device supply
* voltage ranges from 1.62 to 2.0 V and from 2.7 to 3.6 V.
* @retval None
*/
void HAL_DisableCompensationCell(void)
{
CLEAR_BIT(SYSCFG->CCCSR, SYSCFG_CCCSR_EN);
}
/**
* @brief To Enable optimize the I/O speed when the product voltage is low.
* @note This bit is active only if PRODUCT_BELOW_25V user option bit is set. It must be
* used only if the product supply voltage is below 2.5 V. Setting this bit when VDD is
* higher than 2.5 V might be destructive.
* @retval None
*/
void HAL_SYSCFG_EnableIOSpeedOptimize(void)
{
#if defined(SYSCFG_CCCSR_HSLV)
SET_BIT(SYSCFG->CCCSR, SYSCFG_CCCSR_HSLV);
#else
SET_BIT(SYSCFG->CCCSR, (SYSCFG_CCCSR_HSLV0| SYSCFG_CCCSR_HSLV1 | SYSCFG_CCCSR_HSLV2 | SYSCFG_CCCSR_HSLV3));
#endif /* SYSCFG_CCCSR_HSLV */
}
/**
* @brief To Disable optimize the I/O speed when the product voltage is low.
* @note This bit is active only if PRODUCT_BELOW_25V user option bit is set. It must be
* used only if the product supply voltage is below 2.5 V. Setting this bit when VDD is
* higher than 2.5 V might be destructive.
* @retval None
*/
void HAL_SYSCFG_DisableIOSpeedOptimize(void)
{
#if defined(SYSCFG_CCCSR_HSLV)
CLEAR_BIT(SYSCFG->CCCSR, SYSCFG_CCCSR_HSLV);
#else
CLEAR_BIT(SYSCFG->CCCSR, (SYSCFG_CCCSR_HSLV0| SYSCFG_CCCSR_HSLV1 | SYSCFG_CCCSR_HSLV2 | SYSCFG_CCCSR_HSLV3));
#endif /* SYSCFG_CCCSR_HSLV */
}
/**
* @brief Code selection for the I/O Compensation cell
* @param SYSCFG_CompCode: Selects the code to be applied for the I/O compensation cell
* This parameter can be one of the following values:
* @arg SYSCFG_CELL_CODE : Select Code from the cell (available in the SYSCFG_CCVR)
* @arg SYSCFG_REGISTER_CODE: Select Code from the SYSCFG compensation cell code register (SYSCFG_CCCR)
* @retval None
*/
void HAL_SYSCFG_CompensationCodeSelect(uint32_t SYSCFG_CompCode)
{
/* Check the parameter */
assert_param(IS_SYSCFG_CODE_SELECT(SYSCFG_CompCode));
MODIFY_REG(SYSCFG->CCCSR, SYSCFG_CCCSR_CS, (uint32_t)(SYSCFG_CompCode));
}
/**
* @brief Code selection for the I/O Compensation cell
* @param SYSCFG_PMOSCode: PMOS compensation code
* This code is applied to the I/O compensation cell when the CS bit of the
* SYSCFG_CMPCR is set
* @param SYSCFG_NMOSCode: NMOS compensation code
* This code is applied to the I/O compensation cell when the CS bit of the
* SYSCFG_CMPCR is set
* @retval None
*/
void HAL_SYSCFG_CompensationCodeConfig(uint32_t SYSCFG_PMOSCode, uint32_t SYSCFG_NMOSCode )
{
/* Check the parameter */
assert_param(IS_SYSCFG_CODE_CONFIG(SYSCFG_PMOSCode));
assert_param(IS_SYSCFG_CODE_CONFIG(SYSCFG_NMOSCode));
MODIFY_REG(SYSCFG->CCCR, SYSCFG_CCCR_NCC|SYSCFG_CCCR_PCC, (((uint32_t)(SYSCFG_PMOSCode)<< 4)|(uint32_t)(SYSCFG_NMOSCode)) );
}
#if defined(SYSCFG_CCCR_NCC_MMC)
/**
* @brief Code selection for the I/O Compensation cell
* @param SYSCFG_PMOSCode: VDDMMC PMOS compensation code
* This code is applied to the I/O compensation cell when the CS bit of the
* SYSCFG_CMPCR is set
* @param SYSCFG_NMOSCode: VDDMMC NMOS compensation code
* This code is applied to the I/O compensation cell when the CS bit of the
* SYSCFG_CMPCR is set
* @retval None
*/
void HAL_SYSCFG_VDDMMC_CompensationCodeConfig(uint32_t SYSCFG_PMOSCode, uint32_t SYSCFG_NMOSCode )
{
/* Check the parameter */
assert_param(IS_SYSCFG_CODE_CONFIG(SYSCFG_PMOSCode));
assert_param(IS_SYSCFG_CODE_CONFIG(SYSCFG_NMOSCode));
MODIFY_REG(SYSCFG->CCCR, (SYSCFG_CCCR_NCC_MMC | SYSCFG_CCCR_PCC_MMC), (((uint32_t)(SYSCFG_PMOSCode)<< 4)|(uint32_t)(SYSCFG_NMOSCode)) );
}
#endif /* SYSCFG_CCCR_NCC_MMC */
#if defined(SYSCFG_ADC2ALT_ADC2_ROUT0)
/** @brief SYSCFG ADC2 internal input alternate connection macros
* @param Adc2AltRout0 This parameter can be a value of :
* @arg @ref SYSCFG_ADC2_ROUT0_DAC1_1 DAC1_out1 connected to ADC2 VINP[16]
* @arg @ref SYSCFG_ADC2_ROUT0_VBAT4 VBAT/4 connected to ADC2 VINP[16]
*/
void HAL_SYSCFG_ADC2ALT_Rout0Config(uint32_t Adc2AltRout0)
{
/* Check the parameters */
assert_param(IS_SYSCFG_ADC2ALT_ROUT0(Adc2AltRout0));
MODIFY_REG(SYSCFG->ADC2ALT, SYSCFG_ADC2ALT_ADC2_ROUT0, Adc2AltRout0);
}
/**
* @}
*/
#endif /*SYSCFG_ADC2ALT_ADC2_ROUT0*/
#if defined(SYSCFG_ADC2ALT_ADC2_ROUT1)
/** @brief SYSCFG ADC2 internal input alternate connection macros
* @param Adc2AltRout1 This parameter can be a value of :
* @arg @ref SYSCFG_ADC2_ROUT1_DAC1_2 DAC1_out2 connected to ADC2 VINP[17]
* @arg @ref SYSCFG_ADC2_ROUT1_VREFINT VREFINT connected to ADC2 VINP[17]
*/
void HAL_SYSCFG_ADC2ALT_Rout1Config(uint32_t Adc2AltRout1)
{
/* Check the parameters */
assert_param(IS_SYSCFG_ADC2ALT_ROUT1(Adc2AltRout1));
MODIFY_REG(SYSCFG->ADC2ALT, SYSCFG_ADC2ALT_ADC2_ROUT1, Adc2AltRout1);
}
/**
* @}
*/
#endif /*SYSCFG_ADC2ALT_ADC2_ROUT1*/
/**
* @brief Enable the Debug Module during Domain1/CDomain SLEEP mode
* @retval None
*/
void HAL_DBGMCU_EnableDBGSleepMode(void)
{
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEPD1);
}
/**
* @brief Disable the Debug Module during Domain1/CDomain SLEEP mode
* @retval None
*/
void HAL_DBGMCU_DisableDBGSleepMode(void)
{
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEPD1);
}
/**
* @brief Enable the Debug Module during Domain1/CDomain STOP mode
* @retval None
*/
void HAL_DBGMCU_EnableDBGStopMode(void)
{
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD1);
}
/**
* @brief Disable the Debug Module during Domain1/CDomain STOP mode
* @retval None
*/
void HAL_DBGMCU_DisableDBGStopMode(void)
{
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD1);
}
/**
* @brief Enable the Debug Module during Domain1/CDomain STANDBY mode
* @retval None
*/
void HAL_DBGMCU_EnableDBGStandbyMode(void)
{
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD1);
}
/**
* @brief Disable the Debug Module during Domain1/CDomain STANDBY mode
* @retval None
*/
void HAL_DBGMCU_DisableDBGStandbyMode(void)
{
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD1);
}
#if defined(DUAL_CORE)
/**
* @brief Enable the Debug Module during Domain1 SLEEP mode
* @retval None
*/
void HAL_EnableDomain2DBGSleepMode(void)
{
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEPD2);
}
/**
* @brief Disable the Debug Module during Domain2 SLEEP mode
* @retval None
*/
void HAL_DisableDomain2DBGSleepMode(void)
{
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEPD2);
}
/**
* @brief Enable the Debug Module during Domain2 STOP mode
* @retval None
*/
void HAL_EnableDomain2DBGStopMode(void)
{
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD2);
}
/**
* @brief Disable the Debug Module during Domain2 STOP mode
* @retval None
*/
void HAL_DisableDomain2DBGStopMode(void)
{
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD2);
}
/**
* @brief Enable the Debug Module during Domain2 STANDBY mode
* @retval None
*/
void HAL_EnableDomain2DBGStandbyMode(void)
{
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD2);
}
/**
* @brief Disable the Debug Module during Domain2 STANDBY mode
* @retval None
*/
void HAL_DisableDomain2DBGStandbyMode(void)
{
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD2);
}
#endif /*DUAL_CORE*/
#if defined(DBGMCU_CR_DBG_STOPD3)
/**
* @brief Enable the Debug Module during Domain3/SRDomain STOP mode
* @retval None
*/
void HAL_EnableDomain3DBGStopMode(void)
{
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD3);
}
/**
* @brief Disable the Debug Module during Domain3/SRDomain STOP mode
* @retval None
*/
void HAL_DisableDomain3DBGStopMode(void)
{
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD3);
}
#endif /*DBGMCU_CR_DBG_STOPD3*/
#if defined(DBGMCU_CR_DBG_STANDBYD3)
/**
* @brief Enable the Debug Module during Domain3/SRDomain STANDBY mode
* @retval None
*/
void HAL_EnableDomain3DBGStandbyMode(void)
{
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD3);
}
/**
* @brief Disable the Debug Module during Domain3/SRDomain STANDBY mode
* @retval None
*/
void HAL_DisableDomain3DBGStandbyMode(void)
{
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD3);
}
#endif /*DBGMCU_CR_DBG_STANDBYD3*/
/**
* @brief Set the FMC Memory Mapping Swapping config.
* @param BankMapConfig: Defines the FMC Bank mapping configuration. This parameter can be
FMC_SWAPBMAP_DISABLE, FMC_SWAPBMAP_SDRAM_SRAM, FMC_SWAPBMAP_SDRAMB2
* @retval HAL state
*/
void HAL_SetFMCMemorySwappingConfig(uint32_t BankMapConfig)
{
/* Check the parameter */
assert_param(IS_FMC_SWAPBMAP_MODE(BankMapConfig));
MODIFY_REG(FMC_Bank1_R->BTCR[0], FMC_BCR1_BMAP, BankMapConfig);
}
/**
* @brief Get FMC Bank mapping mode.
* @retval The FMC Bank mapping mode. This parameter can be
FMC_SWAPBMAP_DISABLE, FMC_SWAPBMAP_SDRAM_SRAM, FMC_SWAPBMAP_SDRAMB2
*/
uint32_t HAL_GetFMCMemorySwappingConfig(void)
{
return READ_BIT(FMC_Bank1_R->BTCR[0], FMC_BCR1_BMAP);
}
/**
* @brief Configure the EXTI input event line edge
* @note No edge configuration for direct lines but for configurable lines:(EXTI_LINE0..EXTI_LINE21),
* EXTI_LINE49,EXTI_LINE51,EXTI_LINE82,EXTI_LINE84,EXTI_LINE85 and EXTI_LINE86.
* @param EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
* (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved
* @param EXTI_Edge: Specifies EXTI line Edge used.
* This parameter can be one of the following values :
* @arg EXTI_RISING_EDGE : Configurable line, with Rising edge trigger detection
* @arg EXTI_FALLING_EDGE: Configurable line, with Falling edge trigger detection
* @retval None
*/
void HAL_EXTI_EdgeConfig(uint32_t EXTI_Line , uint32_t EXTI_Edge )
{
/* Check the parameter */
assert_param(IS_HAL_EXTI_CONFIG_LINE(EXTI_Line));
assert_param(IS_EXTI_EDGE_LINE(EXTI_Edge));
/* Clear Rising Falling edge configuration */
CLEAR_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->FTSR1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
CLEAR_BIT( *(__IO uint32_t *) (((uint32_t) &(EXTI->RTSR1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
if( (EXTI_Edge & EXTI_RISING_EDGE) == EXTI_RISING_EDGE)
{
SET_BIT( *(__IO uint32_t *) (((uint32_t) &(EXTI->RTSR1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
}
if( (EXTI_Edge & EXTI_FALLING_EDGE) == EXTI_FALLING_EDGE)
{
SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->FTSR1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
}
}
/**
* @brief Generates a Software interrupt on selected EXTI line.
* @param EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
* (EXTI_LINE0..EXTI_LINE21),EXTI_LINE49,EXTI_LINE51,EXTI_LINE82,EXTI_LINE84,EXTI_LINE85 and EXTI_LINE86.
* @retval None
*/
void HAL_EXTI_GenerateSWInterrupt(uint32_t EXTI_Line)
{
/* Check the parameters */
assert_param(IS_HAL_EXTI_CONFIG_LINE(EXTI_Line));
SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->SWIER1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
}
/**
* @brief Clears the EXTI's line pending flags for Domain D1
* @param EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
* (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved
* @retval None
*/
void HAL_EXTI_D1_ClearFlag(uint32_t EXTI_Line)
{
/* Check the parameters */
assert_param(IS_EXTI_D1_LINE(EXTI_Line));
WRITE_REG(*(__IO uint32_t *) (((uint32_t) &(EXTI_D1->PR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
}
#if defined(DUAL_CORE)
/**
* @brief Clears the EXTI's line pending flags for Domain D2
* @param EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
* (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved
* @retval None
*/
void HAL_EXTI_D2_ClearFlag(uint32_t EXTI_Line)
{
/* Check the parameters */
assert_param(IS_EXTI_D2_LINE(EXTI_Line));
WRITE_REG(*(__IO uint32_t *) (((uint32_t) &(EXTI_D2->PR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
}
#endif /*DUAL_CORE*/
/**
* @brief Configure the EXTI input event line for Domain D1
* @param EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
* (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved
* @param EXTI_Mode: Specifies which EXTI line is used as interrupt or an event.
* This parameter can be one or a combination of the following values :
* @arg EXTI_MODE_IT : Interrupt Mode selected
* @arg EXTI_MODE_EVT : Event Mode selected
* @param EXTI_LineCmd controls (Enable/Disable) the EXTI line.
* @retval None
*/
void HAL_EXTI_D1_EventInputConfig(uint32_t EXTI_Line , uint32_t EXTI_Mode, uint32_t EXTI_LineCmd )
{
/* Check the parameter */
assert_param(IS_EXTI_D1_LINE(EXTI_Line));
assert_param(IS_EXTI_MODE_LINE(EXTI_Mode));
if( (EXTI_Mode & EXTI_MODE_IT) == EXTI_MODE_IT)
{
if( EXTI_LineCmd == 0UL)
{
/* Clear EXTI line configuration */
CLEAR_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI_D1->IMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)),(uint32_t)(1UL << (EXTI_Line & 0x1FUL)) );
}
else
{
SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI_D1->IMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
}
}
if( (EXTI_Mode & EXTI_MODE_EVT) == EXTI_MODE_EVT)
{
if( EXTI_LineCmd == 0UL)
{
/* Clear EXTI line configuration */
CLEAR_BIT( *(__IO uint32_t *) (((uint32_t) &(EXTI_D1->EMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
}
else
{
SET_BIT( *(__IO uint32_t *) (((uint32_t) &(EXTI_D1->EMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
}
}
}
#if defined(DUAL_CORE)
/**
* @brief Configure the EXTI input event line for Domain D2
* @param EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
* (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved
* @param EXTI_Mode: Specifies which EXTI line is used as interrupt or an event.
* This parameter can be one or a combination of the following values :
* @arg EXTI_MODE_IT : Interrupt Mode selected
* @arg EXTI_MODE_EVT : Event Mode selected
* @param EXTI_LineCmd controls (Enable/Disable) the EXTI line.
* @retval None
*/
void HAL_EXTI_D2_EventInputConfig(uint32_t EXTI_Line , uint32_t EXTI_Mode, uint32_t EXTI_LineCmd )
{
/* Check the parameter */
assert_param(IS_EXTI_D2_LINE(EXTI_Line));
assert_param(IS_EXTI_MODE_LINE(EXTI_Mode));
if( (EXTI_Mode & EXTI_MODE_IT) == EXTI_MODE_IT)
{
if( EXTI_LineCmd == 0UL)
{
/* Clear EXTI line configuration */
CLEAR_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI_D2->IMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)),(uint32_t)(1UL << (EXTI_Line & 0x1FUL)) );
}
else
{
SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI_D2->IMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
}
}
if( (EXTI_Mode & EXTI_MODE_EVT) == EXTI_MODE_EVT)
{
if( EXTI_LineCmd == 0UL)
{
/* Clear EXTI line configuration */
CLEAR_BIT( *(__IO uint32_t *) (((uint32_t) &(EXTI_D2->EMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
}
else
{
SET_BIT( *(__IO uint32_t *) (((uint32_t) &(EXTI_D2->EMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
}
}
}
#endif /*DUAL_CORE*/
/**
* @brief Configure the EXTI input event line for Domain D3
* @param EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
* (EXTI_LINE0...EXTI_LINE15),(EXTI_LINE19...EXTI_LINE21),EXTI_LINE25, EXTI_LINE34,
* EXTI_LINE35,EXTI_LINE41,(EXTI_LINE48...EXTI_LINE53)
* @param EXTI_LineCmd controls (Enable/Disable) the EXTI line.
* @param EXTI_ClearSrc: Specifies the clear source of D3 pending event.
* This parameter can be one of the following values :
* @arg BDMA_CH6_CLEAR : BDMA ch6 event selected as D3 domain pendclear source
* @arg BDMA_CH7_CLEAR : BDMA ch7 event selected as D3 domain pendclear source
* @arg LPTIM4_OUT_CLEAR : LPTIM4 out selected as D3 domain pendclear source
* @arg LPTIM5_OUT_CLEAR : LPTIM5 out selected as D3 domain pendclear source
* @retval None
*/
void HAL_EXTI_D3_EventInputConfig(uint32_t EXTI_Line, uint32_t EXTI_LineCmd , uint32_t EXTI_ClearSrc )
{
__IO uint32_t *pRegv;
/* Check the parameter */
assert_param(IS_EXTI_D3_LINE(EXTI_Line));
assert_param(IS_EXTI_D3_CLEAR(EXTI_ClearSrc));
if( EXTI_LineCmd == 0UL)
{
/* Clear EXTI line configuration */
CLEAR_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->D3PMR1)) + ((EXTI_Line >> 5 ) * 0x20UL)),(uint32_t)(1UL << (EXTI_Line & 0x1FUL)) );
}
else
{
SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->D3PMR1)) +((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
}
if(((EXTI_Line>>4)%2UL) == 0UL)
{
pRegv = (__IO uint32_t *) (((uint32_t) &(EXTI->D3PCR1L)) + ((EXTI_Line >> 5 ) * 0x20UL));
}
else
{
pRegv = (__IO uint32_t *) (((uint32_t) &(EXTI->D3PCR1H)) + ((EXTI_Line >> 5 ) * 0x20UL));
}
MODIFY_REG(*pRegv, (uint32_t)(3UL << ((EXTI_Line*2UL) & 0x1FUL)), (uint32_t)(EXTI_ClearSrc << ((EXTI_Line*2UL) & 0x1FUL)));
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/